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Abstract

A mathematical model for the ~ow and heat transfer in an accelerating liquid _lm of a non!Newtonian power!law
~uid is presented[ The thermal boundary layer equation permits exact similarity solutions only in the particular case
when the power!law index n is equal to unity\ i[e[ for Newtonian _lms[ To this end\ the heat transfer problem is solved
by means of a local nonsimilarity approach with n and local Prandtl number Prx being the only parameters[ A critical
Prandtl number Pr�x is introduced\ which is a monotonically increasing function of n[ The nonsimilar heat transfer
problem is integrated numerically for several parameter combinations in the ranges 9[1 ¾ n ¾ 1[9 and 9[990 ¾ Prx ¾ 0999
and the calculations for n � 0 compared favourably with earlier results for Newtonian liquid _lms[ For high Prandtl
numbers\ the temperature gradient at the wall is controlled by the wall gradient of the streamwise velocity component\
which is practically independent of n for dilatant ~uids "n × 0[9# but increases signi_cantly with increasing pseudo!
plasticity "n ³ 0[9#[ For Prx ð 0\ on the other hand\ the wall gradient of the temperature _eld increases slowly with n
and this modest variation is ascribed to the displacement e}ect caused by the presence of the momentum boundary
layer[ Curve!_t formulas for the temperature gradient at the wall are provided in order to facilitate rapid and yet
accurate estimates of the local heat transfer coe.cient and the Nusselt number[ Þ 0887 Elsevier Science Ltd[ All rights
reserved[

Nomenclature

a thermal di}usivity l:rcp ðm1 s−0Ł
cp speci_c heat ðJ−0 "kg−0 K−0#Ł
` gravitational acceleration ðm s−1Ł
`"h\ j# subsidiary variable\ 1u"h\ j#:1j

h"h\ j# subsidiary variable j = `"h\ j#
K coe.cient of consistency ðkg sn−1 m−0Ł
L characteristic streamwise length ðmŁ
n power!law index
Nux local Nusselt number\ axx:l
Prx local Prandtl number\ equation "19#
Pr�x critical local Prandtl number
qx local heat transfer rate ðW m−1Ł
Rex local Reynolds number\ xn"wx\�#1−nr:K\ in
equation "09#
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t temperature ðKŁ
wx\ wy velocity in x! and y!direction\ respectively
ðm s−0Ł
Wx"h#\ Wy"h# dimensionless velocity components in x!
and y!direction\ respectively
x\ y streamwise and cross!stream co!ordinates ðmŁ[

Greek symbols
a angle of inclination
ax local heat transfer coe.cient ðW m−1 K−0Ł
d thickness of boundary layer ðmŁ
h dimensionless co!ordinate "y:x#"Rex#0:"n¦0# in
equation "7#
hdl

dimensionless thickness of momentum boundary
layer
hdt

dimensionless thickness of thermal boundary layer
u dimensionless temperature in equation "02#
l thermal conductivity ðW m−0 K−0Ł
j dimensionless co!ordinate\ x:L\ in equation "8#
r density ðkg m−2Ł[

Subscripts
l momentum boundary layer
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t thermal boundary layer
w wall condition
x local value
� free stream condition[

0[ Introduction

E.cient heating or cooling of liquids can be achieved
by allowing the ~uid to ~ow in a thin _lm along a solid
surface kept at a constant temperature[ While the hydro!
dynamics of thin _lm ~ows of Newtonian liquids has been
extensively studied for several decades ð0Ł\ only modest
attention has been devoted to gravity!driven _lms of non!
Newtonian liquids[

Fully developed laminar _lm ~ow along an inclined
plane was considered by Astarita et al[ ð1Ł\ who measured
the _lm thickness for various inclinations and ~ow rates[
In a similar investigation by Therien et al[ ð2Ł\ exper!
imental data for the _lm thickness were compared with
an analytic expression for the thickness of fully developed
_lms of power!law ~uids[ Sylvester et al[ ð3Ł compared
predicted and experimental hydrodynamical charac!
teristics for wavy but otherwise fully developed _lms of
power!law and Newtonian liquids[

The hydrodynamics of developing power!law _lms has
been studied by means of the integral method approach
ð4Ð09Ł and similarity analysis ð00\ 01Ł[ Yang and Yar!
brough ð4\ 5Ł and Narayana Murthy and Sarma ð6Ł
extended the conventional analysis for Newtonian _lms
to also include power!law ~uids[ Later\ Narayana Mur!
thy and Sarma ð7Ł included the e}ect of interfacial drag
at the liquidÐvapour interface in a similar analysis while
Tekic et al[ ð8Ł presented results which accounted for the
streamwise pressure gradient and surface tension and
Andersson and Irgens ð09Ł explored the in~uence of the
rheology of the _lm on the hydrodynamic entrance
length[ A di}erent approach was adopted by Andersson
and Irgens ð00\ 01Ł\ namely to divide the accelerating _lm
~ow into a developing viscous boundary layer and an
external inviscid freestream\ as depicted in Fig[ 0[ They
furthermore demonstrated that a similarity trans!
formation exists\ such that the boundary layer momen!
tum equation for power!law ~uids is exactly transformed
into a FalknerÐSkan type ordinary di}erential equation[

More recently\ the present authors ð02Ł proposed an
alternative similarity transformation for studies of the
hydrodynamics of gravity!driven power!law _lms[ This
new transformation was an extension of the dimen!
sionless velocity component approach introduced by
Shang and Wang ð03Ł for Newtonian boundary layers
and employed successfully to free convection ð03\ 04Ł\
_lm boiling ð05Ł and condensation ð06Ł with the particular
view to account for the variability of the thermophysical
properties of the ~uid[

Fig[ 0[ Schematic representation of accelerating _lm ~ow[

The heat transfer from a constant temperature wall to
hydrodynamically fully developed power!law _lms was
probably _rst considered by Yih and Lee ð07Ł\ while the
corresponding mass transfer problem "i[e[ solid dis!
solution from the wall and di}usion into the _lm# has
been studied by Astarita ð08Ł and Mashelkar and Chavan
ð19Ł[

However\ for accelerating _lm ~ow\ the heat transfer
coe.cient for the inlet section is considerably higher than
further downstream ð10Ł[ To the authors| knowledge\
the integral method approach by Narayana Murthy and
Sarma ð11Ł and the approximate analysis of Andersson
ð12Ł are the _rst and only approaches to the important
problem of heat transfer to developing non!Newtonian
_lms[

The objective of the present paper is to consider the
heat transfer to a gravity!driven power!law _lm accel!
erating along an inclined wall[ This study is a natural
extension of our recent analysis ð02Ł of the hydro!
dynamics of a developing power!law _lm[ It is our inten!
tion to take advantage of the new similarity trans!
formation proposed in that study and develop a rigorous
mathematical model for the accompanying heat transfer
problem[ The controlling dimensionless parameters will
be identi_ed and accurate numerical solutions will be
presented for a number of di}erent parameter combi!
nations[ Finally\ on the basis of the numerical results\ a
short!cut method for rapid and yet reliable estimates of
the heat transfer rate will be provided[
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1[ Physical model and governing partial differential

equations

Consider the accelerating laminar ~ow of a non!New!
tonian liquid _lm down along an inclined plane surface\
as shown schematically in Fig[ 0[ The incompressible and
inelastic ~uid is assumed to obey the OstwaldÐde!Waele
power!law model and the action of viscous stresses is
con_ned to the developing momentum boundary layer
region adjacent to the solid surface[ The basic boundary
layer equations for mass\ momentum and thermal energy
are]
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with boundary conditions

y � 9] wx � 9\ wy � 9\ t � tw "3#

y : dl wx : wx\� "4#

y : dt t : t� "5#

where wx and wy are velocity components in the x! and
y!directions\ respectively\ whereas ` and a denote the
gravitational acceleration and the angle of inclination of
the plane wall[ Here\ it has been anticipated that
"1wx:1y# − 9 throughout the entire _lm[ dl and dt are
momentum and thermal boundary layer thicknesses\
respectively\ whereas wx\� and t� denote the velocity and
temperature of the ~uid outside the respective boundary
layers[ It is noteworthy that while wx\� varies with x\ the
external temperature t� as well as the wall temperature
tw are constants[ The ~uid properties l\ r\ cp\ K and n\
which are assumed to be constant in the present analysis\
are the thermal conductivity\ density\ speci_c heat\
coe.cient of consistency and power!law index\ respect!
ively[ The deviation of n from unity indicates the degree
of deviation from Newtonian rheology and the particular
case n � 0 represents a Newtonian ~uid with dynamic
coe.cient of viscosity K[

No!slip and impermeability at the inclined surface
y � 9 are expressed by the boundary conditions "3#\ while
the outer condition "4# assures that the velocity com!
ponent wx within the boundary layer approaches the
external velocity

wx\� � z1`x cos a "6#

at the edge y � dl of the momentum boundary layer[
Since the frictionless ~ow between the viscous boundary
layer and the free streamline bordering the constant!
pressure atmosphere is quasi!one!dimensional\ the simple
solution "6# is readily derived from equation "1# by

assuming wx\� � 9 "and in_nite _lm thickness# at the inlet
x � 9\ cf[ Andersson and Irgens ð00Ł[

2[ Similarity transformation

Incidently\ as pointed out by Andersson and Irgens
ð00Ł\ the external velocity "6# belongs to the FalknerÐ
Skan class of freestreams wx\� � xm which permits a simi!
larity transformation of the momentum boundary layer
equation even for power!law ~uids[ A generalized
FalknerÐSkan type of transformation was therefore
introduced in refs[ ð00\ 01Ł\ while we ð02Ł recently devised
an alternative similarity transformation[ However\ as we
shall see\ exact similarity solutions of the thermal energy
equation exist only in the particular case when the power!
law index n is equal to 0[

Introducing new independent and dimensionless vari!
ables

h �
y
x
"Rex#0:"n¦0# "7#

j �
x
L

"8#

where L is a characteristic length scale in the streamwise
direction and

Rex �
xn"wx\�#1−nr

K
"09#

is a generalized local Reynolds number[ We follow ref[
ð02Ł and de_ne dimensionless velocity components]

Wx"h# � wx:z1`x cos a "00#

Wy"h# �"wy:z1`x cos a#"Rex#0:"n¦0# "01#

which become analogous to the similarity trans!
formations used in refs[ ð03Ð06Ł for the particular par!
ameter value n � 0[ Unlike the dimensionless velocity
components Wx and Wy\ which are independent of j\ the
dimensionless temperature

u"h\ j# �
t−t�
tw−t�

"02#

will depend both on h and j[ The partial di}erential
equations "0#Ð"2# and their boundary conditions "3#Ð"5#
are now transformed into the following set of dimen!
sionless equations]
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$−
n

1"n¦0#
hWx"h#¦Wy"h#%

1u"h\ j#
1h

¦jWx"h#
1u"h\ j#

1j
�

0

j"n−0#:1"n¦0#PrL

11u"h\ j#

1h1
"05#

subject to the boundary conditions

h � 9] Wx"h# � 9\ Wy"h# � 9\ u"h\ j# � 0 "06#

h � hdl
] Wx"h# � 0 "07#

h � hdt
] u"h\ j# � 9[ "08#

Here\ the denominator "j"n−0#:1"n¦0# PrL# in the di}usion
coe.cient in equation "05# can be identi_ed as the local
Prandtl number

Prx � Re−1:"n¦0#
x =

xwx\�

a
"19#

where a is the thermal di}usivity l:rcr and PrL is the
particular value of Prx at the streamwise position x � L[
Now\ it is readily seen that Prx : 9 as x : 9 if n × 0 and
that Prx : � as x : 9 if n ³ 0[

In the special case when the power!law index n is equal
to unity\ i[e[ for a Newtonian liquid _lm\ Prx simpli_es
to K:ra[ Since the di}usion coe.cient in equation "05#
then becomes independent of x\ 1u:1j � 9 and similarity
can be achieved also for the temperature _eld[ This par!
ticular case has been explored by Andersson ð13Ł[

3[ Solution of the hydrodynamical problem

It is noteworthy that the momentum boundary layer
problem de_ned by the ordinary di}erential equations
"03# and "04# subject to the relevant boundary conditions
"06# and "07# is decoupled from the thermal boundary
layer problem[ The hydrodynamical problem was solved
by Andersson and Shang ð02Ł and accurate numerical
similarity solutions were provided for several values of
the power!law index in the range from 9[0 to 1[9[ The
computed velocity pro_les Wx"h# shown in Fig[ 1 reveal
that the power!law index has a substantial e}ect on the
velocity distribution[ As observed already by Andersson
and Irgens ð00Ł\ the most striking feature being the
monotonic thinning of the momentum boundary layer
with increasing n!values[

4[ Solution of the heat transfer problem

4[0[ The local nonsimilarity approach

Although the hydrodynamical problem admits simi!
larity solutions\ the accompanying thermal problem does
not since the governing equation "05# for the temperature
_eld exhibits explicit dependencies on both j and h[ An
accurate method for obtaining locally nonsimilar bound!

ary!layer solutions was suggested by Sparrow et al[ ð14Ł[
According to ð14Ł local nonsimilarity is achieved by _rst
introducing the new variable `"h\ j# � 1u:1j in the actual
di}erential equation so that the energy equation "05#
becomes

$−
n

1"n¦0#
hWx"h#¦Wy"h#%

1u"h\ j#
1h

¦jWx"h#`"h\ j# �
0

Prx

11u"h\ j#

1h1
[ "10#

Di}erentiating equation "10# with respect to j\ we have

$−
n

1"n¦0#
hWx"h#

¦Wy"h#% `?"h\ j#−Wx"h#`"h\ j#¦
1`"h\ j#

1j
jWx"h#

�
0

Prx $`ý"h\ j#−j−0 n−0
1"n¦0#

11u"h\ j#

1h1 % "11#

where the primes have been introduced to denote di}er!
entiation with respect to h[ The _nal step is to neglect
terms involving "1:1j# in the subsidiary equation "11#\
whereas the primary equation "05# remains intact[ We
introduce the new variable

h"h\ j# 0 j = `"h\ j# � j 1u:1j "12#

so that the subsidiary equation "11# simpli_es to

$−
n

1"n¦0#
hWx"h#¦Wy"h#% h?"h\ j#¦Wx"h#h"h\ j#

�
0

Prx $hý"h\ j#−
n−0

1"n¦0#
11u"h\ j#

1h1 % "13#

after multiplication by j[ Likewise\ j`"h\ j# in equation
"10# is replaced by h[ Thus\ the two!equation local non!
similarity model consists of the coupled second!order
di}erential equations "10# and "13# for the two unknowns
u and h[ These equations can be treated as ordinary
di}erential equations and solved as a two!point boundary
value problem in the single variable h with n and Prx

being the only parameters[ Boundary conditions for the
subsidiary unknown h become

h � 9] h"h\ j# � 9 "14#

h � hdt
h"h\ j# � 9 "15#

after di}erentiation of the boundary conditions "06# and
"08# for u with respect to j[

4[1[ Critical local Prandtl number Pr�x

The thickness hdt
of the thermal boundary layer is gen!

erally di}erent from the thickness hdl
of the momentum

boundary layer[ The latter depends only on the power!
law index n and it was observed in our preceding study
ð02Ł that hdl

was a monotonically decreasing function of



D[!Y[ Shan`\ H[I[ Andersson:Int[ J[ Heat Mass Transfer 31 "0888# 1974Ð1988 1978

Fig[ 1[ Numerical similarity solutions for the streamwise velocity component Wx"h#[ Curves 0Ð8] n � 1[9\ 0[4\ 0[1\ 0[9\ 9[6\ 9[4\ 9[2\ 9[1\
and 9[0[

n throughout the parameter range 9[0¾ n ¾ 1[9[ In that
study hdl

was de_ned in accordance with common practice
in aerodynamic boundary layer theory\ namely as the
value of h for which the dimensionless velocity com!
ponent Wx"h# becomes equal to 9[88[ For convenience\
however\ in the present investigation hdl

is de_ned as the
value of h for which Wx is practically equal to one "i[e[
to within 09−3)# and denoted by h�[ The variation of h�
with n is displayed in Fig[ 2[

Since the thickness of the thermal boundary layer is
obtained as a part of the solution of a two!parameter
problem\ hdt

does not only depend on n but varies also
with Prx[ For a given value of n\ a critical value of the
local Prandtl number is de_ned as the particular par!
ameter value for which hdt

equals hdl
[ This critical value

is denoted by Pr�x and shown in Fig[ 3\ from which Pr�x
can be seen to increase monotonically with n[

4[2[ Precautions for Prx × Pr�x

The thickness hdl
of the momentum boundary layer

exceeds the thermal boundary layer thickness hdt
if

Prx × Pr�x and the di}erence between the two thicknesses
increases with increasing Prx so that the temperature
gradients are only con_ned to the innermost part of the
velocity boundary layer for Prx Ł Pr�x[ The numerical
accuracy will accordingly deteriorate if the two boundary
layer problems are solved simultaneously all the way
from the wall "h � 9# to the edge of the momentum
boundary layer "h � hdl

#\ cf[ Table 0[ The remedy is to
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Fig[ 2[ Variation of dimensionless momentum boundary layer thickness h� with power!law index n[

Fig[ 3[ Variation of critical local Prandtl number Pr�x with power!law index n[

carry out the integration only su.ciently far so that the
temperature gradient vanishes[ To accomplish this\ the
external boundary condition for the velocity _eld in equa!
tion "07# is replaced with the accurately computed value

of Wx at the particular position which corresponds to the
edge of the calculation domain for the temperature _eld[
As for the speci_c example n � 9[4 and Prx � 09 in Table
1\ the numerical solution was obtained with Wx
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Table 0
Similarity solution for the velocity _eld for power!law index
n � 9[4

h Wy Wx dWx:dh

9 9 9 0[093395
9[0 −9[990700 9[094162 0[990837
9[1 −9[996018 9[199470 9[894195
9[2 −9[904665 9[175411 9[703584
9[3 −9[916464 9[252627 9[629611
9[4 −9[931236 9[321778 9[542305
9[5 −9[948803 9[383531 9[471637
9[6 −9[979986 9[438544 9[407450
9[7 −9[091610 9[487451 9[359484
9[8 −9[016503 9[53086 9[397401
0 −9[043597 9[579337 9[250815
0[1 −9[103151 9[633575 9[17244
0[3 −9[179372 9[683881 9[111933
0[5 −9[241194 9[72330 9[06305
0[7 −9[317492 9[754262 9[026937
1 −9[497483 9[778677 9[097220
1[1 −9[480706 9[898025 9[975983
1[3 −9[566518 9[813446 9[957723
1[4 −9[610251 9[820965 9[950583
2 −9[835387 9[844904 9[925461
2[4 −0[068308 9[858366 9[911473
3 −0[306243 9[867458 9[903384
3[4 −0[547591 9[873492 9[998525
4 −0[8910 9[877496 9[995500
4[4 −1[036054 9[880181 9[993554
5 −1[282237 9[88217 9[992264
6 −1[776842 9[884711 9[990774
7 −2[273326 9[88618 9[990021
8 −2[771935 9[887087 9[999611

09 −3[279256 9[887680 9[999373
00 −3[768050 9[888087 9[99923
01 −4[26717 9[888377 9[999137
02 −4[766522 9[888693 9[999076
03 −5[266045 9[888758 9[999035
04 −5[765797 0 9[999007

"1[4# � 9[820965 taken from Table 0 as outer condition
for Wx\ in spite of the fact that the momentum boundary
layer extends all the way to h � 04[

4[3[ Precautions for Prx ³ Pr�x

The thermal boundary layer becomes thicker than the
viscous boundary layer if Prx ³ Pr�x and the ratio hdt

:hdl

increases as Prx is reduced[ Temperature gradients thus
extend far into the frictionless ~ow[ To facilitate the
numerical integration of the thermal boundary layer
problem and assure the numerical accuracy\ the momen!
tum boundary layer equations "03# and "04# are inte!
grated only up to hdl

[ Thereafter\ the velocity _eld is taken
as

Wx"h# � 0 and Wy"h# � −0
1
h¦constant "16#

throughout the remaining h!range from hdl
to hdt

[ Here\
with Wx"h# � 0 in the continuity equation "03#\ the
explicit variation of Wy"h# in "16# is readily obtained by
straightforward integration[ A speci_c example n � 0[4
and Prx � 0 is given in Table 2 and shown graphically in
Fig[ 4[ Here\ the analytical continuation in the range
1[6 ¾ h ¾ 4[5 is represented by broken lines[

5[ Numerical results

The above non!Newtonian ~ow and heat transfer
problem was solved numerically for several values of
the power!law index in the range 9[1 ¾ n ¾ 1[9 for local
Prandtl numbers Prx from 9[990 to 0999[ A number of
computed temperature pro_les are presented in Fig[ 5\
while the wall gradient\ which is the most important
heat transfer characteristic\ is shown in Fig[ 6[ For the
particular parameter value n � 0 the wall gradient data
in Table 3 agreed in the fourth signi_cant digit with
the calculations for a Newtonian _lm by Andersson ð13Ł
throughout the entire Prandtl number range[

The most striking feature of Fig[ 5 is that the Prandtl
number e}ect is more prominent than the in~uence of
the rheological parameter n[ Irrespective of the value of
the power!law index\ the thickness of the thermal bound!
ary layer is roughly the same as the thickness of the
momentum boundary layer for Prx � 0[ Moreover\ for
high Prandtl numbers the thermal layer is signi_cantly
thinner than the viscous layer\ while for Prx ð 0 the ther!
mal boundary layer extends far into the external free
stream[ Consequently\ the thinning of the thermal bound!
ary layer with increasing values of Prx makes the mag!
nitude of the temperature gradient at the wall increase
monotonically with the local Prandtl number\ cf[ Fig[ 6[
The thick thermal boundary layer in the low Prandtl
number cases suggests that the temperature adjusts from
tw to t� mainly in ~uid with free stream velocity wx\�[
Thus\ as a _rst approximation\ the viscous boundary
layer does not contribute to the heat ~ux and the tem!
perature gradient at the wall should therefore be inde!
pendent of n[ However\ the data for Prx � 9[990 in Table
3 show that the wall gradient increases slowly with n as
n is varied from 9[1Ð1[9\ the total increase being less
than 7)[ For Prx ð 0 the principal e}ect of the viscous
boundary layer on the temperature gradient at the wall
stems from the displacement of the external inviscid ~ow
away from the wall[ As demonstrated by Andersson ð15Ł
the heat transfer rate is slightly overestimated if the dis!
placement e}ect is neglected[ Since the displacement
thickness of the momentum boundary layer has been seen
to decrease with increasing values of the power!law index
ð00Ł\ the observed wall gradients in Table 3 tend to
increase slightly with n[
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Table 1
Local nonsimilarity solution of the heat transfer problem for n � 9[4 and Prx � 09

h Wy Wx dWx:dh u du:dh

9 9 9 0[093395 0[999999 −0[028234
9[0 −9[990700 9[094162 0[990837 9[775092 −0[026746
9[1 −9[996018 9[199470 9[894195 9[661605 −0[016676
9[2 −9[904665 9[175411 9[703584 9[550972 −0[090564
9[3 −9[916464 9[252627 9[629611 9[442090 −0[943941
9[4 −9[931236 9[321778 9[542305 9[340971 −9[871161
9[5 −9[948803 9[383531 9[471637 9[246318 −9[776044
9[6 −9[979986 9[438544 9[407450 9[163175 −9[662984
9[7 −9[091610 9[487451 9[359484 9[192087 −9[536349
9[8 −9[016503 9[53086 9[397401 9[033770 −9[408144
0 −9[043597 9[579337 9[250815 9[988018 −9[286428
0[1 −9[103151 9[633575 9[17244 9[939452 −9[199363
0[3 −9[179372 9[683881 9[111933 9[902531 −9[970327
0[5 −9[241194 9[72330 9[06305 9[992693 −9[915118
0[7 −9[317492 9[754262 9[026937 9[999688 −9[995596
1 −9[497483 9[778677 9[097220 9[999024 −9[990175
1[1 −9[480706 9[898025 9[975983 9[999906 −9[999081
1[3 −9[566518 9[813446 9[957723 9[999990 −9[999911
1[4 −9[610251 9[820965 9[950583 9[999999 −9[999996

A qualitatively di}erent situation occurs for high local
Prandtl numbers[ Due to the substantial thinning of the
thermal boundary layer with increasing Prx\ the tem!
perature gradients are contained within the innermost
part of the momentum boundary layer[ Thus\ the wall
gradient of the temperature _eld is controlled by the
velocity gradient dWx:dh at the wall[ The accurate
numerical solution of the hydrodynamic problem in ð02Ł
showed that dWx:dh is practically independent of n for
dilatant _lms but increases signi_cantly with increasing
pseudo!plasticity 0−n for n ³ 0[ It is therefore interesting
to observe that exactly the same n!dependency is carried
over to the wall gradients of the temperature _eld in
Table 3[

6[ Heat transfer

The heat transfer rate between the solid wall which is
maintained at temperature tw and the liquid _lm is of
particular signi_cance in industrial applications[ The
local heat transfer rate qx\ which is governed by Fourier|s
law\ is conveniently expressed as a local heat transfer
coe.cient

ax �
qx

tw−t�
� −lx−0"Rex#0:"n¦0# 0

1u"h\ j#
1h 1h�9

"17#

or\ alternatively\ as a local Nusselt number

Nux �
axx
l

� −"Rex#0:"n¦0# 0
1u"h\ j#

1h 1h�9

[ "18#

To facilitate rapid estimates of the local heat transfer
coe.cient ax or the local Nusselt number Nux\ accurate
curve!_t formulas for the wall gradient of the temperature
_eld

−0
1u"h\ j#

1h 1h�9

� a¦bPrc
x "29#

are provided[ The optimised expressions for the
coe.cients a\ b and c\ as obtained by matching the for!
mula "29# to the data in Table 3\ are given in Table 4[
Predictions by means of this short!cut method are also
included in Table 3 and turn out to compare accurately
with the numerical results over the entire parameter
ranges 9[1 ¾ n ¾ 1[9 and 9[990 ¾ Prx ¾ 0999[

7[ Local similarity vs[ local nonsimilarity

A simpler approach to the nonsimilar heat transfer
problem associated with the gravity!driven power!law
_lm would be the local similarity scheme[ In that
approach j is regarded as a known constant at any
streamwise position and the last term on the left!hand!
side of equation "05# is\ therefore\ neglected[ The numeri!
cal solution of the simpli_ed version of equation "05# can
then be obtained locally with Prx and n as parameters by
means of the same integration technique as for the local
nonsimilar problem de_ned in Section 4[0 and with the
same precautions as described in Sections 4[2 and 4[3[

The two!parameter local similarity problem was solved
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Table 2
Local nonsimilarity solution of the heat transfer problem for n � 0[4 and Prx � 0[9

h Wy Wx dWx:dh u du:dh

9 9 9 9[754897 0 −9[374083
9[0 −9[999761 9[973677 9[718613 9[840371 −9[374030
9[1 −9[992402 9[054811 9[681737 9[891871 −9[373667
9[2 −9[996853 9[132225 9[644223 9[743436 −9[372793
9[3 −9[903154 9[205858 9[606132 9[795140 −9[370830
9[4 −9[911351 9[275657 9[567532 9[647086 −9[367818
9[5 −9[921487 9[341572 9[52850 9[609400 −9[363426
9[6 −9[933608 9[403567 9[599121 9[552231 −9[357456
9[7 −9[947760 9[461610 9[459593 9[505745 −9[359750
9[8 −9[964986 9[515683 9[419726 9[460120 −9[340294
0 −9[982327 9[565777 9[370941 9[415547 −9[328726
0[1 −9[025507 9[654063 9[390875 9[330320 −9[300081
0[3 −9[077538 9[726688 9[213566 9[251540 −9[264415
0[5 −9[138530 9[784153 9[149550 9[180484 −9[223157
0[7 −9[208495 9[827394 9[070661 9[11807 −9[178372
1 −9[286773 9[857345 9[019042 9[064766 −9[13246
1[1 −9[373935 9[876004 9[957167 9[020556 −9[087805
1[3 −9[46568 9[885593 9[917845 9[985977 −9[046463
1[5 −9[563205 9[888632 9[994226 9[957205 −9[010926
1[6 −9[613003 0 9[999382 9[946922 −9[093745
1[7 −9[663097 0 9 9[936185 −9[989026
2 −9[763097 0 9 9[92076 −9[954968
2[3 −0[963097 0 9 9[902212 −9[929803
2[7 −0[163097 0 9 9[993863 −9[901861
3 −0[263097 0 9 9[991898 −9[997910
3[3 −0[463097 0 9 9[999895 −9[991683
3[7 −0[663097 0 9 9[999132 −9[999747
4 −0[763097 0 9 9[999005 −9[999343
4[3 −1[963097 0 9 9[999905 −9[999003
4[5 −1[063097 0 9 9 −9[999943

The velocity _eld beyond h � 1[6 is obtained from the analytical continuation in equation
"16#[

numerically for various combinations of n and Prx in the
intervals 9[1¾ n ¾ 1[9 and 9[990 ¾ Prx ¾ 0999[ Results
for the magnitude of the wall gradient of the dimen!
sionless temperature _eld\ i[e[ −1u:1h=n�9 are reported
in Table 3[ To facilitate the comparison between the
local nonsimilarity and the local similarity approach the
deviation between the two sets of data\ normalized with
the latter\ has been de_ned as o and included in the table[

Let us emphasize that the two approaches become
identical for n � 0 since the thermal boundary layer prob!
lem admits exact similarity solutions for Newtonian
~uids[ It is therefore not surprising that the relative devi!
ation o in the local similarity and local nonsimilarity
solutions increases with deviation of the power!law index
n from unity\ i[e[ with increasing non!Newtonian
rheology[ The deviation is moreover more signi_cant for
the most pseudoplastic liquids "n � 9[1# than for the
highly dilatant _lm "n � 1[9#\ whereas the local Prandtl

number Prx turned out to have only a minor e}ect on o[
The largest value of o for each n is shown in Fig[ 7[ Since
the local similarity solutions generally are in fairly close
agreement with the more accurate local nonsimilarity
solutions\ their relative deviation never exceeding 8)\ it
is likely to conclude that the results obtained with the
local nonsimilarity approach are of good accuracy[

8[ Conclusions

This paper has focused on the heat transfer from an
inclined plane surface to an accelerating liquid _lm of a
power!law ~uid[ Although the thermal boundary layer
equation generally fails to permit similarity solutions\ a
novel similarity transformation devised by Andersson
and Shang ð02Ł for the accompanying hydrodynamical
problem was adopted in combination with a local non!
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Fig[ 4[ Pro_les of dimensionless temperature u and velocity components Wx and Wy for n � 0[4 and Prx � 0[9[ Solid lines represent
numerical results and broken lines denote the analytical continuations in equation "16#[

similarity solution method due to Sparrow et al[ ð14Ł[ The
resulting transformed problem turned out to involve only
two independent parameters\ namely the power!law
index n and the local Prandtl number Prx de_ned in
equation "19#[ It is noteworthy that all other parameters\
like the streamwise location x\ the ~uid properties 7\
K\ n\ cr and l and the component of the gravitational
acceleration along the wall ` cos a\ have been combined
into Prx and the local Reynolds number Rex in equation
"09#[ Accurate numerical results were obtained for vari!
ous combinations of Prx and n covering the range of
Prandtl numbers from 9[990Ð0999 and for the power!law
index in the range 9[1¾ n ¾ 1[9[ Special treatment of the
low and high Prandtl number cases was essential in order
to maintain the numerical accuracy and the results were
practically indistinguishable from those of Andersson

ð13Ł for n � 0 over the entire Prx!range[ The main _ndings
can be summarized as follows]

"0# The thickness of the thermal boundary layer
decreases monotonically with increasing Prx[ The
thermal boundary layer extends far out in the free
stream for Prx ð 0 and is on the other hand con_ned
to the innermost part of the momentum boundary
layer for Prx Ł 0[

"1# The local heat transfer coe.cient and the local Nus!
selt number depend on the local Reynolds number
Rex and the wall gradient of the dimensionless tem!
perature[

"2# For Prx Ł 0 the wall temperature gradient is con!
trolled by the velocity gradient at the wall\ which
was practically independent of n for dilatant ~uids
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Fig[ 5[ Local nonsimilarity solutions for the dimensionless temperature pro_le u"h# for di}erent values of the local Prandtl number Prx

and the power!law index n] "a# Prx � 9[990^ curves 0Ð7] n � 9[1\ 9[2\ 9[4\ 9[6\ 0[9\ 0[1\ 0[4 and 1[9[ "b# Prx � 9[90^ curves 0Ð7] n � 9[1\
9[2\ 9[4\ 9[6\ 0[9\ 0[1\ 0[4 and 1[9[ "c# Prx � 9[0^ curves 0Ð7] n � 9[1\ 9[2\ 9[4\ 9[6\ 0[9\ 0[1\ 0[4 and 1[9[ "d# Prx � 0[9^ curves 0Ð7] n � 1[9\
0[4\ 0[1\ 0[9\ 9[1\ 9[6\ 9[2 and 9[4[ "e# Prx � 0999^ curves 0Ð7] n � 9[1\ 9[2\ 1[9\ 9[4\ 0[4\ 9[6\ 0[1 and 0[9[
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Fig[ 6[ Variation of dimensionless temperature gradient 1u:1h at the wall h � 9 with power!law index n for di}erent values of the local
Prandtl number Prx[
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Table 3
Computed values of the temperature gradient 1u:1h at the wall h � 9 for di}erent values of the local Prandtl number Prx and the
power!law index n

Prx

n 9[990 9[90 9[0 0 09 099 0999

9[1 "0# 9[919422 9[952036 9[075298 9[400974 0[168746 1[877749 5[648685
"1# 9[919670 9[953158 9[072660 9[401049 0[170249 1[875109 5[648189
"2# 9[907861 9[947257 9[061325 9[363194 0[081521 1[675524 5[126867
"3# 7[12) 7[08) 7[93) 6[67) 6[20) 6[15) 7[25)

9[4 "0# 9[919858 9[952898 9[072594 9[368152 0[028234 1[453005 4[517695
"1# 9[919681 9[953832 9[068631 9[367139 0[025309 1[348479 4[528589
"2# 9[919111 9[950507 9[066173 9[352675 0[094915 1[389530 4[362610
"3# 2[58) 2[61) 2[46) 2[23) 2[00) 1[84) 1[72)

9[6 "0# 9[910191 9[953467 9[073617 9[364688 0[004577 1[380606 4[344399
"1# 9[910050 9[954840 9[070082 9[366691 0[004339 1[382769 4[357749
"2# 9[919709 9[952245 9[070249 9[357997 0[987536 1[343387 4[260514
"3# 0[77) 0[82) 0[75) 0[55) 0[44) 0[41) 0[45)

0[9 "0# 9[910346 9[954247 9[075706 9[366462 0[095603 1[343914 4[240739
"1# 9[910347 9[955620 9[071299 9[366209 0[091379 1[338159 4[240999
"2# 9[910344 9[954247 9[075706 9[366462 0[095603 1[343914 4[240739
"3# 9) 9) 9) 9) 9) 9) 9)

0[1 "0# 9[910484 9[954729 9[077208 9[379282 0[096578 1[337328 4[229027
"1# 9[910590 9[956042 9[072323 9[379153 0[094158 1[337045 4[225317
"2# 9[910675 9[955397 9[078832 9[373076 0[004705 1[355058 4[269203
"3# −9[77) −9[76) −9[74) −9[67) −9[62) −9[61) −9[64)

0[4 "0# 9[910652 9[955395 9[089215 9[374157 0[001855 1[340852 4[218642
"1# 9[910677 9[956659 9[074002 9[373579 0[098549 1[349639 4[220959
"2# 9[911068 9[956563 9[082753 9[382314 0[029348 1[378690 4[301750
"3# −0[77) −0[76) −0[71) −0[54) −0[44) −0[41) −0[43)

1[9 "0# 9[911000 9[956054 9[081873 9[381648 0[013590 1[357196 4[245567
"1# 9[911988 9[957660 9[076800 9[381939 0[019379 1[356069 4[245929
"2# 9[911543 9[958119 9[087737 9[495253 0[042058 1[418691 4[389044
"3# −1[39) −1[86) −1[84) −1[58) −1[37) −1[32) −1[32)

"0# Local similarity solutions[
"1# Accurate curve!_t formula equation "29#[
"2# Local nonsimilarity solutions[
"3# Relative deviation between local nonsimilarity and local similarity results normalized with the latter[
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Fig[ 7[ Largest relative deviation o between local nonsimilarity and local similarity solutions in the wall gradient 1u:1h[ Variation with
power!law index n[

Table 4
Coe.cients a\ b and c in the curve!_t formula "29# for low
"Prx ¾ 0# and high "Prx − 0# local Prandtl numbers and for
pseudoplastic "n ¾ 0# and dilatant "n − 0# ~uids

For 9[990 ¾ Prx ¾ 0
a � −9[9975¦9[9998×"0:n#
b � 9[374¦9[99990×"0:n#0:n

c � 9[288¦9[997×"0:n#
"9[1 ¾ n ¾ 0#

a � −9[9963−9[99917n
b � 9[36¦9[904n
c � 9[396

"0 ¾ n ¾ 1#

For 0 ¾ Prx ¾ 0999
a � 9[9194−9[9734"0:n#0:2

b � 9[407¦9[9123"0:n#
c � 9[2213¦9[99985"0:n#0[5

"9[1 ¾ n ¾ 0#
a � −9[01¦9[968ðn:"n¦0#Ł0:1

b � 9[430¦9[9998n2

c � 9[2295¦9[9916"0:n#0[54

"0 ¾ n ¾ 1#

"n × 0[9# but increased signi_cantly with increasing
pseudo!plasticity "0−n#[

"3# For Prx ð 0 the temperature gradient increased
slightly with n and this modest variation was ascribed
to the displacing in~uence of the momentum bound!
ary layer on the external frictionless ~ow[

"4# Finally\ a set of accurate curve!_t formulas for the
wall temperature gradient is provided in order to
enable rapid estimates of the heat transfer rate for
any combination of n and Prx within the parameter
ranges considered[

A special case of the transformation used herein has
previously been applied in the analysis of the heat transfer
in Newtonian liquid _lms with variable ~uid properties
ð05\ 06Ł[ The successful generalization to non!Newtonian
~uids makes us believe that the present approach should
be applicable also to the analysis of heat transfer in
power!law _lms with variable thermophysical properties[

Acknowledgement

This study was partly supported by the Research
Council of Norway under Contract Nos 009546:309 and
008071:309[

References

ð0Ł H[I[ Andersson\ The momentum integral approach to lami!
nar thin!_lm ~ow\ ASME Symposium on Thin Fluid Films\
Cincinnati\ OH\ FED!37 "0876# 6Ð02[

ð1Ł G[ Astarita\ G[ Marrucci\ G[ Palumbo\ Non!Newtonian
gravity ~ow along inclined plane surfaces\ Ind[ Eng[ Chem[
Fundam[ 2 "0853# 222Ð228[

ð2Ł N[ Therien\ B[ Coupal\ J[L[ Corneille\ Veri_cation expe�r!
imentale de l|e�paisseur du _lm pour des liquides non!New!
toniens s|e�coulant par gravite� sur un plan incline�\ Can[ J[
Chem[ Eng[ 37 "0869# 06Ð19[

ð3Ł N[D[ Sylvester\ J[S[ Tyler\ A[H[P[ Skelland\ Non!New!
tonian thin _lms] theory and experiment\ Can[ J[ Chem[
Eng[ 40 "0862# 307Ð318[

ð4Ł T[M[T[ Yang\ D[W[ Yarbrough\ A numerical study of the
laminar ~ow of non!Newtonian ~uids along a vertical wall\
ASME J[ Appl[ Mech[ 39 "0862# 189Ð181[

ð5Ł T[M[T[ Yang\ D[W[ Yarbrough\ Laminar ~ow of non!
Newtonian liquid _lms inside a vertical pipe\ Rheol[ Acta
08 "0879# 321Ð325[



D[!Y[ Shan`\ H[I[ Andersson:Int[ J[ Heat Mass Transfer 31 "0888# 1974Ð1988 1988

ð6Ł V[ Narayana Murthy\ P[K[ Sarma\ A note on hydro!
dynamics entrance lengths of non!Newtonian laminar fall!
ing liquid _lms\ Chem[ Eng[ Sci[ 21 "0866# 455Ð456[

ð7Ł V[ Narayana Murthy and P[K[ Sarma\ Dynamics of
developing laminar non!Newtonian falling liquid _lms with
free surface\ ASME J[ Appl[ Mech[ 34 "0867# 08Ð13[

ð8Ł M[N[ Tekic\ D[ Posarac\ D[ Petrovic\ A note on the
entrance region lengths of non!Newtonian laminar falling
_lms\ Chem[ Eng[ Sci[ 30 "0875# 2129Ð2121[

ð09Ł H[I[ Andersson\ F[ Irgens\ Hydrodynamic entrance length
of non!Newtonian liquid _lms\ Chem[ Eng[ Sci[ 34 "0889#
426Ð430[

ð00Ł H[I[ Andersson\ F[ Irgens\ Gravity!driven laminar _lm ~ow
of power!law ~uids along vertical walls\ J[ Non!Newtonian
Fluid Mech[ 16 "0877# 042Ð061[

ð01Ł H[I[ Andersson\ F[ Irgens\ Film ~ow of power!law ~uids\
in] N[P[ Cheremisino} "Ed[#\ Encyclopedia of Fluid Mech!
anics\ vol[ 8\ Gulf Publishing\ Houston\ TX\ 0889\ pp[ 506Ð
537[

ð02Ł H[I[ Andersson\ D[Y[ Shang\ An extended study of the
hydrodynamics of gravity!driven _lm ~ow of power!law
~uids\ Fluid Dyn[ Res[ 11 "0887# 234Ð246[

ð03Ł D[Y[ Shang\ B[X[ Wang\ E}ect of variable thermophysical
properties on laminar free convection of gas\ Int[ J[ Heat
Mass Transfer 22 "0889# 0276Ð0284[

ð04Ł D[Y[ Shang\ B[X[ Wang\ Y[ Wang\ Y[ Quan\ Study on
liquid laminar free convection with consideration of vari!
able thermophysical properties\ Int[ J[ Heat Mass Transfer
25 "0882# 2300Ð2308[

ð05Ł D[Y[ Shang\ B[X[ Wang\ L[C[ Zhong\ A study on laminar
_lm boiling of liquid along isothermal vertical plates in a
pool with consideration of variable thermophysical proper!
ties\ Int[ J[ Heat Mass Transfer 26 "0883# 708Ð717[

ð06Ł D[Y[ Shang\ B[X[ Wang\ An extended study on steady!
state laminar _lm condensation of a superheated vapour
on an isothermal vertical plate\ Int[ J[ Heat Mass Transfer
39 "0886# 820Ð830[

ð07Ł S[M[ Yih\ M[W[ Lee\ Heating or evaporation in the thermal
entrance region of a non!Newtonian laminar falling liquid
_lm\ Int[ J[ Heat Mass Transfer 18 "0875# 0888Ð1991[

ð08Ł G[ Astarita\ Mass transfer from a ~at solid surface to a
falling non!Newtonian liquid _lm\ Ind[ Eng[ Chem[
Fundam[ 4 "0855# 03Ð07[

ð19Ł R[A[ Mashelkar and V[V[ Chavan\ Solid dissolution in
falling _lms of non!Newtonian liquids\ J[ Chem[ Eng[ Japan
5 "0862# 059Ð056[

ð10Ł V[C[ van der Mast\ S[M[ Read\ L[A[ Bromley\ Boiling of
natural sea water in falling _lm evaporators\ Desalination
07 "0865# 60Ð83[

ð11Ł V[ Narayana Murthy and P[K[ Sarma\ Heat transfer to
non!Newtonian laminar falling liquid _lms with smooth
wave free gasÐliquid interface\ Int[ J[ Multiphase Flow 3
"0867# 302Ð314[

ð12Ł H[I[ Andersson\ Forced convection heat transfer in accel!
erating laminar non!Newtonian _lms\ Proceedings of the
Fourth Asian Congress of Fluid Mechanics\ Hong Kong 0
"0878# H0ÐH3[

ð13Ł H[I[ Andersson\ Di}usion from a vertical wall into an
accelerating falling liquid _lm\ Int[ J[ Heat Mass Transfer
29 "0876# 572Ð578[

ð14Ł E[M[ Sparrow\ H[ Quack\ C[J[ Boerner\ Local non!
similarity boundary!layer solutions\ AIAA J[ 7 "0869#
0825Ð0831[

ð15Ł H[I[ Andersson\ On approximate formulas for low Prandtl
number heat transfer in laminar wedge ~ows\ Int[ J[ Heat
Fluid Flow 8 "0877# 130Ð132[


